Assumptions:
TeX:
\log \Gamma\!\left(1 + z\right) = -\gamma z + \sum_{k=2}^{\infty} \frac{\zeta\!\left(k\right)}{k} {\left(-z\right)}^{k} z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \left|z\right| < 1
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
LogGamma | Logarithmic gamma function | |
ConstGamma | The constant gamma (0.577...) | |
Sum | Sum | |
RiemannZeta | Riemann zeta function | |
Pow | Power | |
Infinity | Positive infinity | |
CC | Complex numbers | |
Abs | Absolute value |
Source code for this entry:
Entry(ID("661054"), Formula(Equal(LogGamma(Add(1, z)), Add(Neg(Mul(ConstGamma, z)), Sum(Mul(Div(RiemannZeta(k), k), Pow(Neg(z), k)), For(k, 2, Infinity))))), Variables(z), Assumptions(And(Element(z, CC), Less(Abs(z), 1))))