References:
- Marc Deleglise, Jean-Louis Nicolas, The Landau function and the Riemann Hypothesis, https://arxiv.org/abs/1907.07664
TeX:
\left(\operatorname{RH}\right) \iff \left(\log\!\left(g(n)\right) < \sqrt{f(n)} \;\text{ for all } n \in \mathbb{Z}_{\ge 1}\; \text{ where } f(y) = \mathop{\operatorname{solution*}\,}\limits_{x \in \left(1, \infty\right)} \left[\operatorname{li}(x) = y\right]\right)
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
RiemannHypothesis | Riemann hypothesis | |
Log | Natural logarithm | |
LandauG | Landau's function | |
Sqrt | Principal square root | |
ZZGreaterEqual | Integers greater than or equal to n | |
UniqueSolution | Unique solution | |
LogIntegral | Logarithmic integral | |
OpenInterval | Open interval | |
Infinity | Positive infinity |
Source code for this entry:
Entry(ID("65fa9f"), Formula(Equivalent(RiemannHypothesis, Where(All(Less(Log(LandauG(n)), Sqrt(f(n))), ForElement(n, ZZGreaterEqual(1))), Equal(f(y), UniqueSolution(Brackets(Equal(LogIntegral(x), y)), ForElement(x, OpenInterval(1, Infinity))))))), References("Marc Deleglise, Jean-Louis Nicolas, The Landau function and the Riemann Hypothesis, https://arxiv.org/abs/1907.07664"))