Assumptions:
TeX:
{e}^{x + y} = \sum_{k=0}^{\infty} \sum_{n=0}^{\infty} {n + k \choose k} \frac{{x}^{k} {y}^{n}}{\left(n + k\right)!} x \in \mathbb{C} \;\mathbin{\operatorname{and}}\; y \in \mathbb{C}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Exp | Exponential function | |
Sum | Sum | |
Binomial | Binomial coefficient | |
Pow | Power | |
Factorial | Factorial | |
Infinity | Positive infinity | |
CC | Complex numbers |
Source code for this entry:
Entry(ID("65c610"), Formula(Equal(Exp(Add(x, y)), Sum(Sum(Mul(Binomial(Add(n, k), k), Div(Mul(Pow(x, k), Pow(y, n)), Factorial(Add(n, k)))), For(n, 0, Infinity)), For(k, 0, Infinity)))), Variables(x, y), Assumptions(And(Element(x, CC), Element(y, CC))))