Assumptions:
TeX:
\,{}_2F_1\!\left(a, b, c, 1\right) = \frac{\Gamma\!\left(c\right) \Gamma\!\left(c - a - b\right)}{\Gamma\!\left(c - a\right) \Gamma\!\left(c - b\right)} a \in \mathbb{C} \,\mathbin{\operatorname{and}}\, b \in \mathbb{C} \,\mathbin{\operatorname{and}}\, c \in \mathbb{C} \setminus \{0, -1, \ldots\} \,\mathbin{\operatorname{and}}\, \operatorname{Re}\!\left(c - a - b\right) \gt 0
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Hypergeometric2F1 | Gauss hypergeometric function | |
GammaFunction | Gamma function | |
CC | Complex numbers | |
ZZLessEqual | Integers less than or equal to n | |
Re | Real part |
Source code for this entry:
Entry(ID("659ce8"), Formula(Equal(Hypergeometric2F1(a, b, c, 1), Div(Mul(GammaFunction(c), GammaFunction(Sub(Sub(c, a), b))), Mul(GammaFunction(Sub(c, a)), GammaFunction(Sub(c, b)))))), Variables(a, b, c), Assumptions(And(Element(a, CC), Element(b, CC), Element(c, SetMinus(CC, ZZLessEqual(0))), Greater(Re(Sub(Sub(c, a), b)), 0))))