Assumptions:
TeX:
\,{}_2F_1\!\left(a, b, c, 1\right) = \frac{\Gamma(c) \Gamma\!\left(c - a - b\right)}{\Gamma\!\left(c - a\right) \Gamma\!\left(c - b\right)}
a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; b \in \mathbb{C} \;\mathbin{\operatorname{and}}\; c \in \mathbb{C} \setminus \{0, -1, \ldots\} \;\mathbin{\operatorname{and}}\; \operatorname{Re}\!\left(c - a - b\right) > 0Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| Hypergeometric2F1 | Gauss hypergeometric function | |
| Gamma | Gamma function | |
| CC | Complex numbers | |
| ZZLessEqual | Integers less than or equal to n | |
| Re | Real part |
Source code for this entry:
Entry(ID("659ce8"),
Formula(Equal(Hypergeometric2F1(a, b, c, 1), Div(Mul(Gamma(c), Gamma(Sub(Sub(c, a), b))), Mul(Gamma(Sub(c, a)), Gamma(Sub(c, b)))))),
Variables(a, b, c),
Assumptions(And(Element(a, CC), Element(b, CC), Element(c, SetMinus(CC, ZZLessEqual(0))), Greater(Re(Sub(Sub(c, a), b)), 0))))