Assumptions:
References:
- http://functions.wolfram.com/Polynomials/ChebyshevT/20/02/01/0002/
TeX:
{T}^{(r)}_{n}(x) = \frac{\sqrt{\pi}}{{\left(x - 1\right)}^{r}} \,{}_3{\textbf F}_2\!\left(1, -n, n, \frac{1}{2}, 1 - r, \frac{1 - x}{2}\right)
n \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; r \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; x \in \mathbb{C} \setminus \left\{-1, 1\right\}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| ComplexDerivative | Complex derivative | |
| ChebyshevT | Chebyshev polynomial of the first kind | |
| Sqrt | Principal square root | |
| Pi | The constant pi (3.14...) | |
| Pow | Power | |
| ZZ | Integers | |
| ZZGreaterEqual | Integers greater than or equal to n | |
| CC | Complex numbers |
Source code for this entry:
Entry(ID("6582c4"),
Formula(Equal(ComplexDerivative(ChebyshevT(n, x), For(x, x, r)), Mul(Div(Sqrt(Pi), Pow(Sub(x, 1), r)), Hypergeometric3F2Regularized(1, Neg(n), n, Div(1, 2), Sub(1, r), Div(Sub(1, x), 2))))),
Variables(n, r, x),
Assumptions(And(Element(n, ZZ), Element(r, ZZGreaterEqual(0)), Element(x, SetMinus(CC, Set(-1, 1))))),
References("http://functions.wolfram.com/Polynomials/ChebyshevT/20/02/01/0002/"))