Assumptions:
TeX:
\,{}_2{\textbf F}_1\!\left(a, b, -n, z\right) = \frac{\left(a\right)_{n + 1} \left(b\right)_{n + 1} {z}^{n + 1}}{\left(n + 1\right)!} \,{}_2F_1\!\left(a + n + 1, b + n + 1, n + 2, z\right) a \in \mathbb{C} \,\mathbin{\operatorname{and}}\, b \in \mathbb{C} \,\mathbin{\operatorname{and}}\, n \in \mathbb{Z}_{\ge 0} \,\mathbin{\operatorname{and}}\, z \in \mathbb{C} \setminus \left\{1\right\}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Hypergeometric2F1Regularized | Regularized Gauss hypergeometric function | |
RisingFactorial | Rising factorial | |
Pow | Power | |
Factorial | Factorial | |
Hypergeometric2F1 | Gauss hypergeometric function | |
CC | Complex numbers | |
ZZGreaterEqual | Integers greater than or equal to n |
Source code for this entry:
Entry(ID("65693e"), Formula(Equal(Hypergeometric2F1Regularized(a, b, Neg(n), z), Mul(Div(Mul(Mul(RisingFactorial(a, Add(n, 1)), RisingFactorial(b, Add(n, 1))), Pow(z, Add(n, 1))), Factorial(Add(n, 1))), Hypergeometric2F1(Add(Add(a, n), 1), Add(Add(b, n), 1), Add(n, 2), z)))), Variables(a, b, n, z), Assumptions(And(Element(a, CC), Element(b, CC), Element(n, ZZGreaterEqual(0)), Element(z, SetMinus(CC, Set(1))))))