Assumptions:
References:
- https://doi.org/10.1080%2F10652469.2017.1376193
TeX:
\sum_{n=0}^{\infty} \frac{1}{x_{n}^{r + 1}} = \frac{{f}^{(r)}(0)}{r !}\; \text{ where } f(z) = \lim_{t \to z} \left(\psi\!\left(t\right) - \frac{\psi'\!\left(t\right)}{\psi\!\left(t\right)}\right) r \in \mathbb{Z}_{\ge 1}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Sum | Sum | |
Pow | Power | |
DigammaFunctionZero | Zero of the digamma function | |
Infinity | Positive infinity | |
ComplexDerivative | Complex derivative | |
Factorial | Factorial | |
ComplexLimit | Limiting value, complex variable | |
DigammaFunction | Digamma function | |
ZZGreaterEqual | Integers greater than or equal to n |
Source code for this entry:
Entry(ID("6547da"), Formula(Equal(Sum(Div(1, Pow(DigammaFunctionZero(n), Add(r, 1))), For(n, 0, Infinity)), Where(Div(ComplexDerivative(f(z), For(z, 0, r)), Factorial(r)), Equal(f(z), ComplexLimit(Parentheses(Sub(DigammaFunction(t), Div(DigammaFunction(t, 1), DigammaFunction(t)))), For(t, z)))))), Variables(r), Assumptions(Element(r, ZZGreaterEqual(1))), References("https://doi.org/10.1080%2F10652469.2017.1376193"))