Fungrim home page

Fungrim entry: 64bd32

(RH)        (λnlog(n)2log ⁣(2π)+1γ2,  n)\left(\operatorname{RH}\right) \;\implies\; \left(\lambda_{n} \sim \frac{\log(n)}{2} - \frac{\log\!\left(2 \pi\right) + 1 - \gamma}{2}, \; n \to \infty\right)
References:
  • https://doi.org/10.7169/facm/1317045228
TeX:
\left(\operatorname{RH}\right) \;\implies\; \left(\lambda_{n} \sim \frac{\log(n)}{2} - \frac{\log\!\left(2 \pi\right) + 1 - \gamma}{2}, \; n \to \infty\right)
Definitions:
Fungrim symbol Notation Short description
RiemannHypothesisRH\operatorname{RH} Riemann hypothesis
KeiperLiLambdaλn\lambda_{n} Keiper-Li coefficient
Loglog(z)\log(z) Natural logarithm
Piπ\pi The constant pi (3.14...)
ConstGammaγ\gamma The constant gamma (0.577...)
Infinity\infty Positive infinity
Source code for this entry:
Entry(ID("64bd32"),
    Formula(Implies(RiemannHypothesis, AsymptoticTo(KeiperLiLambda(n), Sub(Div(Log(n), 2), Div(Sub(Add(Log(Mul(2, Pi)), 1), ConstGamma), 2)), n, Infinity))),
    References("https://doi.org/10.7169/facm/1317045228"))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC