Assumptions:
TeX:
\left|{P}^{(r)}_{n}(x)\right| \le \frac{{2}^{r + 1 / 2}}{\sqrt{\pi}} \frac{{n}^{r - 1 / 2}}{{\left(1 - {x}^{2}\right)}^{\left( 2 n + 1 \right) / 4}} n \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; r \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; -1 < x < 1
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Abs | Absolute value | |
ComplexDerivative | Complex derivative | |
LegendrePolynomial | Legendre polynomial | |
Pow | Power | |
Sqrt | Principal square root | |
Pi | The constant pi (3.14...) | |
ZZGreaterEqual | Integers greater than or equal to n |
Source code for this entry:
Entry(ID("6476bd"), Formula(LessEqual(Abs(ComplexDerivative(LegendrePolynomial(n, x), For(x, x, r))), Mul(Div(Pow(2, Add(r, Div(1, 2))), Sqrt(Pi)), Div(Pow(n, Sub(r, Div(1, 2))), Pow(Sub(1, Pow(x, 2)), Div(Add(Mul(2, n), 1), 4)))))), Variables(n, r, x), Assumptions(And(Element(n, ZZGreaterEqual(0)), Element(r, ZZGreaterEqual(0)), Less(-1, x, 1))))