Fungrim home page

Fungrim entry: 646745

gcd ⁣(ad,bd)=gcd ⁣(a,b)d\gcd\!\left(\frac{a}{d}, \frac{b}{d}\right) = \frac{\gcd\!\left(a, b\right)}{\left|d\right|}
Assumptions:aZandbZanddZanddaanddba \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, b \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, d \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, d \mid a \,\mathbin{\operatorname{and}}\, d \mid b
TeX:
\gcd\!\left(\frac{a}{d}, \frac{b}{d}\right) = \frac{\gcd\!\left(a, b\right)}{\left|d\right|}

a \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, b \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, d \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, d \mid a \,\mathbin{\operatorname{and}}\, d \mid b
Definitions:
Fungrim symbol Notation Short description
GCDgcd ⁣(n,k)\gcd\!\left(n, k\right) Greatest common divisor
Absz\left|z\right| Absolute value
ZZZ\mathbb{Z} Integers
Source code for this entry:
Entry(ID("646745"),
    Formula(Equal(GCD(Div(a, d), Div(b, d)), Div(GCD(a, b), Abs(d)))),
    Variables(a, b, d),
    Assumptions(And(Element(a, ZZ), Element(b, ZZ), Element(d, ZZ), Divides(d, a), Divides(d, b))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-06-18 07:49:59.356594 UTC