Assumptions:
References:
- https://dx.doi.org/10.1098/rspa.2014.0534
TeX:
R_{N}\!\left(z\right) = \frac{1}{2 N \left(2 N + 1\right)} \int_{0}^{\infty} \frac{B_{2 N + 1}\!\left(t - \left\lfloor t \right\rfloor\right)}{{\left(t + z\right)}^{2 N}} \, dt
z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \operatorname{Re}(z) > 0 \;\mathbin{\operatorname{and}}\; N \in \mathbb{Z}_{\ge 1}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| LogBarnesGRemainder | Remainder term in asymptotic expansion of logarithmic Barnes G-function | |
| Integral | Integral | |
| BernoulliPolynomial | Bernoulli polynomial | |
| Pow | Power | |
| Infinity | Positive infinity | |
| CC | Complex numbers | |
| Re | Real part | |
| ZZGreaterEqual | Integers greater than or equal to n |
Source code for this entry:
Entry(ID("645c98"),
Formula(Equal(LogBarnesGRemainder(N, z), Mul(Div(1, Mul(Mul(2, N), Add(Mul(2, N), 1))), Integral(Div(BernoulliPolynomial(Add(Mul(2, N), 1), Sub(t, Floor(t))), Pow(Add(t, z), Mul(2, N))), For(t, 0, Infinity))))),
Variables(z, N),
Assumptions(And(Element(z, CC), Greater(Re(z), 0), Element(N, ZZGreaterEqual(1)))),
References("https://dx.doi.org/10.1098/rspa.2014.0534"))