Assumptions:
TeX:
\theta_{2}\!\left(z , \tau\right) = \theta_{2}\!\left(0 , \tau\right) \cos\!\left(\pi z\right) \prod_{n=1}^{\infty} \frac{\cos\!\left(\pi \left(n \tau + z\right)\right) \cos\!\left(\pi \left(n \tau - z\right)\right)}{\cos^{2}\!\left(\pi n \tau\right)} z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \tau \in \mathbb{H}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
JacobiTheta | Jacobi theta function | |
Cos | Cosine | |
Pi | The constant pi (3.14...) | |
Product | Product | |
Pow | Power | |
Infinity | Positive infinity | |
CC | Complex numbers | |
HH | Upper complex half-plane |
Source code for this entry:
Entry(ID("64081c"), Formula(Equal(JacobiTheta(2, z, tau), Mul(Mul(JacobiTheta(2, 0, tau), Cos(Mul(Pi, z))), Product(Div(Mul(Cos(Mul(Pi, Add(Mul(n, tau), z))), Cos(Mul(Pi, Sub(Mul(n, tau), z)))), Pow(Cos(Mul(Mul(Pi, n), tau)), 2)), For(n, 1, Infinity))))), Variables(z, tau), Assumptions(And(Element(z, CC), Element(tau, HH))))