Assumptions:
References:
- https://arxiv.org/abs/math/0308086
TeX:
\log G\!\left(z + 1\right) = z \log \Gamma(z) + \frac{{z}^{2}}{4} - \frac{\log(z)}{2} B_{2}\!\left(z\right) - \log(A) - \int_{0}^{\infty} \frac{{e}^{-z x}}{{x}^{2}} \left(\frac{1}{1 - {e}^{-x}} - \frac{1}{x} - \frac{1}{2} - \frac{x}{12}\right) \, dx
z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \operatorname{Re}(z) > 0Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| LogBarnesG | Logarithmic Barnes G-function | |
| LogGamma | Logarithmic gamma function | |
| Pow | Power | |
| Log | Natural logarithm | |
| BernoulliPolynomial | Bernoulli polynomial | |
| Integral | Integral | |
| Exp | Exponential function | |
| Infinity | Positive infinity | |
| CC | Complex numbers | |
| Re | Real part |
Source code for this entry:
Entry(ID("6395ee"),
Formula(Equal(LogBarnesG(Add(z, 1)), Sub(Sub(Sub(Add(Mul(z, LogGamma(z)), Div(Pow(z, 2), 4)), Mul(Div(Log(z), 2), BernoulliPolynomial(2, z))), Log(ConstGlaisher)), Integral(Mul(Div(Exp(Mul(Neg(z), x)), Pow(x, 2)), Sub(Sub(Sub(Div(1, Sub(1, Exp(Neg(x)))), Div(1, x)), Div(1, 2)), Div(x, 12))), For(x, 0, Infinity))))),
Variables(z),
Assumptions(And(Element(z, CC), Greater(Re(z), 0))),
References("https://arxiv.org/abs/math/0308086"))