Assumptions:
TeX:
x \in \mathbb{C} \;\mathbin{\operatorname{and}}\; y \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; t \in \mathbb{C} \;\mathbin{\operatorname{and}}\; x + t \notin \left(-\infty, 0\right] \;\mathbin{\operatorname{and}}\; y + t \notin \left(-\infty, 0\right] \;\mathbin{\operatorname{and}}\; z + t \notin \left(-\infty, 0\right]Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| ComplexDerivative | Complex derivative | |
| CarlsonRG | Carlson symmetric elliptic integral of the second kind | |
| CarlsonRF | Carlson symmetric elliptic integral of the first kind | |
| CC | Complex numbers | |
| OpenClosedInterval | Open-closed interval | |
| Infinity | Positive infinity |
Source code for this entry:
Entry(ID("638fa6"),
Equal(ComplexDerivative(CarlsonRG(Add(x, t), Add(y, t), Add(z, t)), For(t, t)), Mul(Div(1, 2), CarlsonRF(Add(x, t), Add(y, t), Add(z, t)))),
Variables(x, y, z, t),
Assumptions(And(Element(x, CC), Element(y, CC), Element(z, CC), Element(t, CC), NotElement(Add(x, t), OpenClosedInterval(Neg(Infinity), 0)), NotElement(Add(y, t), OpenClosedInterval(Neg(Infinity), 0)), NotElement(Add(z, t), OpenClosedInterval(Neg(Infinity), 0)))))