Fungrim home page

Fungrim entry: 638fa6

ddtRG ⁣(x+t,y+t,z+t)=12RF ⁣(x+t,y+t,z+t)\frac{d}{d t}\, R_G\!\left(x + t, y + t, z + t\right) = \frac{1}{2} R_F\!\left(x + t, y + t, z + t\right)
Assumptions:xC  and  yC  and  zC  and  tC  and  x+t(,0]  and  y+t(,0]  and  z+t(,0]x \in \mathbb{C} \;\mathbin{\operatorname{and}}\; y \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; t \in \mathbb{C} \;\mathbin{\operatorname{and}}\; x + t \notin \left(-\infty, 0\right] \;\mathbin{\operatorname{and}}\; y + t \notin \left(-\infty, 0\right] \;\mathbin{\operatorname{and}}\; z + t \notin \left(-\infty, 0\right]
TeX:
x \in \mathbb{C} \;\mathbin{\operatorname{and}}\; y \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; t \in \mathbb{C} \;\mathbin{\operatorname{and}}\; x + t \notin \left(-\infty, 0\right] \;\mathbin{\operatorname{and}}\; y + t \notin \left(-\infty, 0\right] \;\mathbin{\operatorname{and}}\; z + t \notin \left(-\infty, 0\right]
Definitions:
Fungrim symbol Notation Short description
ComplexDerivativeddzf ⁣(z)\frac{d}{d z}\, f\!\left(z\right) Complex derivative
CarlsonRGRG ⁣(x,y,z)R_G\!\left(x, y, z\right) Carlson symmetric elliptic integral of the second kind
CarlsonRFRF ⁣(x,y,z)R_F\!\left(x, y, z\right) Carlson symmetric elliptic integral of the first kind
CCC\mathbb{C} Complex numbers
OpenClosedInterval(a,b]\left(a, b\right] Open-closed interval
Infinity\infty Positive infinity
Source code for this entry:
Entry(ID("638fa6"),
    Equal(ComplexDerivative(CarlsonRG(Add(x, t), Add(y, t), Add(z, t)), For(t, t)), Mul(Div(1, 2), CarlsonRF(Add(x, t), Add(y, t), Add(z, t)))),
    Variables(x, y, z, t),
    Assumptions(And(Element(x, CC), Element(y, CC), Element(z, CC), Element(t, CC), NotElement(Add(x, t), OpenClosedInterval(Neg(Infinity), 0)), NotElement(Add(y, t), OpenClosedInterval(Neg(Infinity), 0)), NotElement(Add(z, t), OpenClosedInterval(Neg(Infinity), 0)))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC