Assumptions:
TeX:
\mathop{\operatorname{solution}\,}\limits_{w \in \left(-\infty, -1\right]} \left[w {e}^{w} = x\right] = W_{-1}\!\left(x\right) x \in \left[-\frac{1}{e}, 0\right)
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Exp | Exponential function | |
OpenClosedInterval | Open-closed interval | |
Infinity | Positive infinity | |
LambertW | Lambert W-function | |
ClosedOpenInterval | Closed-open interval | |
ConstE | The constant e (2.718...) |
Source code for this entry:
Entry(ID("636929"), Formula(Equal(UniqueSolution(Brackets(Equal(Mul(w, Exp(w)), x)), w, Element(w, OpenClosedInterval(Neg(Infinity), -1))), LambertW(-1, x))), Variables(x), Assumptions(Element(x, ClosedOpenInterval(Neg(Div(1, ConstE)), 0))))