Assumptions:
TeX:
G_{q}\!\left(\chi\right) = \sum_{n=1}^{q} \chi(n) {e}^{2 \pi i n / q}
q \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; \chi \in G_{q}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| GaussSum | Gauss sum | |
| Sum | Sum | |
| Exp | Exponential function | |
| Pi | The constant pi (3.14...) | |
| ConstI | Imaginary unit | |
| ZZGreaterEqual | Integers greater than or equal to n | |
| DirichletGroup | Dirichlet characters with given modulus |
Source code for this entry:
Entry(ID("62f12c"),
Formula(Equal(GaussSum(q, chi), Sum(Mul(chi(n), Exp(Div(Mul(Mul(Mul(2, Pi), ConstI), n), q))), For(n, 1, q)))),
Variables(q, chi),
Assumptions(And(Element(q, ZZGreaterEqual(1)), Element(chi, DirichletGroup(q)))))