Fungrim home page

Fungrim entry: 62b81d

ψ ⁣(z)=0(ettezt1et)dt\psi\!\left(z\right) = \int_{0}^{\infty} \left(\frac{{e}^{-t}}{t} - \frac{{e}^{-z t}}{1 - {e}^{-t}}\right) \, dt
Assumptions:zC  and  Re(z)>0z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \operatorname{Re}(z) > 0
\psi\!\left(z\right) = \int_{0}^{\infty} \left(\frac{{e}^{-t}}{t} - \frac{{e}^{-z t}}{1 - {e}^{-t}}\right) \, dt

z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \operatorname{Re}(z) > 0
Fungrim symbol Notation Short description
DigammaFunctionψ ⁣(z)\psi\!\left(z\right) Digamma function
Integralabf(x)dx\int_{a}^{b} f(x) \, dx Integral
Expez{e}^{z} Exponential function
Infinity\infty Positive infinity
CCC\mathbb{C} Complex numbers
ReRe(z)\operatorname{Re}(z) Real part
Source code for this entry:
    Formula(Equal(DigammaFunction(z), Integral(Parentheses(Sub(Div(Exp(Neg(t)), t), Div(Exp(Neg(Mul(z, t))), Sub(1, Exp(Neg(t)))))), For(t, 0, Infinity)))),
    Assumptions(And(Element(z, CC), Greater(Re(z), 0))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC