Assumptions:
TeX:
\psi\!\left(z\right) = \int_{0}^{\infty} \left(\frac{{e}^{-t}}{t} - \frac{{e}^{-z t}}{1 - {e}^{-t}}\right) \, dt
z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \operatorname{Re}(z) > 0Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| DigammaFunction | Digamma function | |
| Integral | Integral | |
| Exp | Exponential function | |
| Infinity | Positive infinity | |
| CC | Complex numbers | |
| Re | Real part |
Source code for this entry:
Entry(ID("62b81d"),
Formula(Equal(DigammaFunction(z), Integral(Parentheses(Sub(Div(Exp(Neg(t)), t), Div(Exp(Neg(Mul(z, t))), Sub(1, Exp(Neg(t)))))), For(t, 0, Infinity)))),
Variables(z),
Assumptions(And(Element(z, CC), Greater(Re(z), 0))))