Assumptions:
TeX:
\operatorname{erfi}\!\left(z\right) = \frac{2}{\sqrt{\pi}} \int_{0}^{z} {e}^{{t}^{2}} \, dt
z \in \mathbb{C}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| Erfi | Imaginary error function | |
| Sqrt | Principal square root | |
| ConstPi | The constant pi (3.14...) | |
| Exp | Exponential function | |
| Pow | Power | |
| CC | Complex numbers |
Source code for this entry:
Entry(ID("622772"),
Formula(Equal(Erfi(z), Mul(Div(2, Sqrt(ConstPi)), Integral(Exp(Pow(t, 2)), Tuple(t, 0, z))))),
Variables(z),
Assumptions(Element(z, CC)))