Assumptions:
TeX:
{c}_{n} = \frac{1}{n {a}_{0}} \sum_{k=1}^{n} \left(\frac{3 k}{2} - n\right) {a}_{k} {c}_{n - k}\; \text{ where } {c}_{n} = [{x}^{n}] \sqrt{A},\,{a}_{n} = [{x}^{n}] A A \in \mathbb{C}[[x]] \,\mathbin{\operatorname{and}}\, [{x}^{0}] A \ne 0 \,\mathbin{\operatorname{and}}\, n \in \mathbb{Z}_{\ge 1}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Sqrt | Principal square root | |
FormalPowerSeries | Formal power series | |
CC | Complex numbers | |
ZZGreaterEqual | Integers greater than or equal to n |
Source code for this entry:
Entry(ID("6202cb"), Formula(Where(Equal(Subscript(c, n), Mul(Div(1, Mul(n, Subscript(a, 0))), Sum(Mul(Mul(Sub(Div(Mul(3, k), 2), n), Subscript(a, k)), Subscript(c, Sub(n, k))), Tuple(k, 1, n)))), Equal(Subscript(c, n), SeriesCoefficient(Sqrt(A), x, n)), Equal(Subscript(a, n), SeriesCoefficient(A, x, n)))), Variables(A, n), Assumptions(And(Element(A, FormalPowerSeries(CC, x)), Unequal(SeriesCoefficient(A, x, 0), 0), Element(n, ZZGreaterEqual(1)))))