Assumptions:
TeX:
\left(1 + {z}^{2}\right) y''(z) + 2 z y'(z) = 0\; \text{ where } y(z) = {c}_{1} + {c}_{2} \operatorname{atan}(z) z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; {c}_{1} \in \mathbb{C} \;\mathbin{\operatorname{and}}\; {c}_{2} \in \mathbb{C} \;\mathbin{\operatorname{and}}\; i z \notin \left(-\infty, -1\right] \cup \left[1, \infty\right)
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Pow | Power | |
ComplexDerivative | Complex derivative | |
Atan | Inverse tangent | |
CC | Complex numbers | |
ConstI | Imaginary unit | |
OpenClosedInterval | Open-closed interval | |
Infinity | Positive infinity | |
ClosedOpenInterval | Closed-open interval |
Source code for this entry:
Entry(ID("61d8f3"), Formula(Where(Equal(Add(Mul(Add(1, Pow(z, 2)), ComplexDerivative(y(z), For(z, z, 2))), Mul(Mul(2, z), ComplexDerivative(y(z), For(z, z, 1)))), 0), Equal(y(z), Add(Subscript(c, 1), Mul(Subscript(c, 2), Atan(z)))))), Variables(z, Subscript(c, 1), Subscript(c, 2)), Assumptions(And(Element(z, CC), Element(Subscript(c, 1), CC), Element(Subscript(c, 2), CC), NotElement(Mul(ConstI, z), Union(OpenClosedInterval(Neg(Infinity), -1), ClosedOpenInterval(1, Infinity))))))