Fungrim home page

Fungrim entry: 61c002

RD ⁣(0,1,z)={3(E ⁣(1z)zK ⁣(1z))z(1z),z0  and  z13π4,z=1~,z=0R_D\!\left(0, 1, z\right) = \begin{cases} \frac{3 \left(E\!\left(1 - z\right) - z K\!\left(1 - z\right)\right)}{z \left(1 - z\right)}, & z \ne 0 \;\mathbin{\operatorname{and}}\; z \ne 1\\\frac{3 \pi}{4}, & z = 1\\{\tilde \infty}, & z = 0\\ \end{cases}
Assumptions:zCz \in \mathbb{C}
TeX:
R_D\!\left(0, 1, z\right) = \begin{cases} \frac{3 \left(E\!\left(1 - z\right) - z K\!\left(1 - z\right)\right)}{z \left(1 - z\right)}, & z \ne 0 \;\mathbin{\operatorname{and}}\; z \ne 1\\\frac{3 \pi}{4}, & z = 1\\{\tilde \infty}, & z = 0\\ \end{cases}

z \in \mathbb{C}
Definitions:
Fungrim symbol Notation Short description
CarlsonRDRD ⁣(x,y,z)R_D\!\left(x, y, z\right) Degenerate Carlson symmetric elliptic integral of the third kind
EllipticEE(m)E(m) Legendre complete elliptic integral of the second kind
EllipticKK(m)K(m) Legendre complete elliptic integral of the first kind
Piπ\pi The constant pi (3.14...)
UnsignedInfinity~{\tilde \infty} Unsigned infinity
CCC\mathbb{C} Complex numbers
Source code for this entry:
Entry(ID("61c002"),
    Formula(Equal(CarlsonRD(0, 1, z), Cases(Tuple(Div(Mul(3, Sub(EllipticE(Sub(1, z)), Mul(z, EllipticK(Sub(1, z))))), Mul(z, Sub(1, z))), And(NotEqual(z, 0), NotEqual(z, 1))), Tuple(Div(Mul(3, Pi), 4), Equal(z, 1)), Tuple(UnsignedInfinity, Equal(z, 0))))),
    Variables(z),
    Assumptions(Element(z, CC)))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC