Assumptions:
TeX:
R_D\!\left(0, 1, z\right) = \begin{cases} \frac{3 \left(E\!\left(1 - z\right) - z K\!\left(1 - z\right)\right)}{z \left(1 - z\right)}, & z \ne 0 \;\mathbin{\operatorname{and}}\; z \ne 1\\\frac{3 \pi}{4}, & z = 1\\{\tilde \infty}, & z = 0\\ \end{cases}
z \in \mathbb{C}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| CarlsonRD | Degenerate Carlson symmetric elliptic integral of the third kind | |
| EllipticE | Legendre complete elliptic integral of the second kind | |
| EllipticK | Legendre complete elliptic integral of the first kind | |
| Pi | The constant pi (3.14...) | |
| UnsignedInfinity | Unsigned infinity | |
| CC | Complex numbers |
Source code for this entry:
Entry(ID("61c002"),
Formula(Equal(CarlsonRD(0, 1, z), Cases(Tuple(Div(Mul(3, Sub(EllipticE(Sub(1, z)), Mul(z, EllipticK(Sub(1, z))))), Mul(z, Sub(1, z))), And(NotEqual(z, 0), NotEqual(z, 1))), Tuple(Div(Mul(3, Pi), 4), Equal(z, 1)), Tuple(UnsignedInfinity, Equal(z, 0))))),
Variables(z),
Assumptions(Element(z, CC)))