Fungrim home page

Fungrim entry: 618a9f

RJ ⁣(x,y,z,w)A3/2(13E14+F6+9E2883G229EF52+3H26E316+3F240+3EG20+45E2F2729FG689EH68)3.4A3/2M8(1M)3/2   where A=x+y+z+2w5,  X=1xA,  Y=1yA,  Z=1zA,  W=(XYZ)2,  E=XY+XZ+YZ3W2,  F=XYZ+2EW+4W3,  G=(2XYZ+EW+3W3)W,  H=XYZW2,  M=max ⁣(X,Y,Z,W)\left|R_J\!\left(x, y, z, w\right) - {A}^{-3 / 2} \left(1 - \frac{3 E}{14} + \frac{F}{6} + \frac{9 {E}^{2}}{88} - \frac{3 G}{22} - \frac{9 E F}{52} + \frac{3 H}{26} - \frac{{E}^{3}}{16} + \frac{3 {F}^{2}}{40} + \frac{3 E G}{20} + \frac{45 {E}^{2} F}{272} - \frac{9 F G}{68} - \frac{9 E H}{68}\right)\right| \le \frac{3.4 \left|{A}^{-3 / 2}\right| {M}^{8}}{{\left(1 - M\right)}^{3 / 2}}\; \text{ where } A = \frac{x + y + z + 2 w}{5},\;X = 1 - \frac{x}{A},\;Y = 1 - \frac{y}{A},\;Z = 1 - \frac{z}{A},\;W = \frac{\left(-X - Y - Z\right)}{2},\;E = X Y + X Z + Y Z - 3 {W}^{2},\;F = X Y Z + 2 E W + 4 {W}^{3},\;G = \left(2 X Y Z + E W + 3 {W}^{3}\right) W,\;H = X Y Z {W}^{2},\;M = \max\!\left(\left|X\right|, \left|Y\right|, \left|Z\right|, \left|W\right|\right)
Assumptions:xC  and  yC  and  zC  and  wC  and  Re(x)0  and  Re(y)0  and  Re(z)0  and  Re(w)>0  and  ((x0  and  y0)  or  (x0  and  z0)  or  (y0  and  z0))  and  15xx+y+z+2w<1  and  15yx+y+z+2w<1  and  15zx+y+z+2w<1  and  15zx+y+z+2w<1x \in \mathbb{C} \;\mathbin{\operatorname{and}}\; y \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; w \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \operatorname{Re}(x) \ge 0 \;\mathbin{\operatorname{and}}\; \operatorname{Re}(y) \ge 0 \;\mathbin{\operatorname{and}}\; \operatorname{Re}(z) \ge 0 \;\mathbin{\operatorname{and}}\; \operatorname{Re}(w) > 0 \;\mathbin{\operatorname{and}}\; \left(\left(x \ne 0 \;\mathbin{\operatorname{and}}\; y \ne 0\right) \;\mathbin{\operatorname{or}}\; \left(x \ne 0 \;\mathbin{\operatorname{and}}\; z \ne 0\right) \;\mathbin{\operatorname{or}}\; \left(y \ne 0 \;\mathbin{\operatorname{and}}\; z \ne 0\right)\right) \;\mathbin{\operatorname{and}}\; \left|1 - \frac{5 x}{x + y + z + 2 w}\right| < 1 \;\mathbin{\operatorname{and}}\; \left|1 - \frac{5 y}{x + y + z + 2 w}\right| < 1 \;\mathbin{\operatorname{and}}\; \left|1 - \frac{5 z}{x + y + z + 2 w}\right| < 1 \;\mathbin{\operatorname{and}}\; \left|1 - \frac{5 z}{x + y + z + 2 w}\right| < 1
References:
  • https://doi.org/10.6028/jres.107.034
TeX:
\left|R_J\!\left(x, y, z, w\right) - {A}^{-3 / 2} \left(1 - \frac{3 E}{14} + \frac{F}{6} + \frac{9 {E}^{2}}{88} - \frac{3 G}{22} - \frac{9 E F}{52} + \frac{3 H}{26} - \frac{{E}^{3}}{16} + \frac{3 {F}^{2}}{40} + \frac{3 E G}{20} + \frac{45 {E}^{2} F}{272} - \frac{9 F G}{68} - \frac{9 E H}{68}\right)\right| \le \frac{3.4 \left|{A}^{-3 / 2}\right| {M}^{8}}{{\left(1 - M\right)}^{3 / 2}}\; \text{ where } A = \frac{x + y + z + 2 w}{5},\;X = 1 - \frac{x}{A},\;Y = 1 - \frac{y}{A},\;Z = 1 - \frac{z}{A},\;W = \frac{\left(-X - Y - Z\right)}{2},\;E = X Y + X Z + Y Z - 3 {W}^{2},\;F = X Y Z + 2 E W + 4 {W}^{3},\;G = \left(2 X Y Z + E W + 3 {W}^{3}\right) W,\;H = X Y Z {W}^{2},\;M = \max\!\left(\left|X\right|, \left|Y\right|, \left|Z\right|, \left|W\right|\right)

x \in \mathbb{C} \;\mathbin{\operatorname{and}}\; y \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; w \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \operatorname{Re}(x) \ge 0 \;\mathbin{\operatorname{and}}\; \operatorname{Re}(y) \ge 0 \;\mathbin{\operatorname{and}}\; \operatorname{Re}(z) \ge 0 \;\mathbin{\operatorname{and}}\; \operatorname{Re}(w) > 0 \;\mathbin{\operatorname{and}}\; \left(\left(x \ne 0 \;\mathbin{\operatorname{and}}\; y \ne 0\right) \;\mathbin{\operatorname{or}}\; \left(x \ne 0 \;\mathbin{\operatorname{and}}\; z \ne 0\right) \;\mathbin{\operatorname{or}}\; \left(y \ne 0 \;\mathbin{\operatorname{and}}\; z \ne 0\right)\right) \;\mathbin{\operatorname{and}}\; \left|1 - \frac{5 x}{x + y + z + 2 w}\right| < 1 \;\mathbin{\operatorname{and}}\; \left|1 - \frac{5 y}{x + y + z + 2 w}\right| < 1 \;\mathbin{\operatorname{and}}\; \left|1 - \frac{5 z}{x + y + z + 2 w}\right| < 1 \;\mathbin{\operatorname{and}}\; \left|1 - \frac{5 z}{x + y + z + 2 w}\right| < 1
Definitions:
Fungrim symbol Notation Short description
Absz\left|z\right| Absolute value
CarlsonRJRJ ⁣(x,y,z,w)R_J\!\left(x, y, z, w\right) Carlson symmetric elliptic integral of the third kind
Powab{a}^{b} Power
CCC\mathbb{C} Complex numbers
ReRe(z)\operatorname{Re}(z) Real part
Source code for this entry:
Entry(ID("618a9f"),
    Formula(Where(LessEqual(Abs(Sub(CarlsonRJ(x, y, z, w), Mul(Pow(A, Neg(Div(3, 2))), Sub(Sub(Add(Add(Add(Sub(Add(Sub(Sub(Add(Add(Sub(1, Div(Mul(3, E), 14)), Div(F, 6)), Div(Mul(9, Pow(E, 2)), 88)), Div(Mul(3, G), 22)), Div(Mul(Mul(9, E), F), 52)), Div(Mul(3, H), 26)), Div(Pow(E, 3), 16)), Div(Mul(3, Pow(F, 2)), 40)), Div(Mul(Mul(3, E), G), 20)), Div(Mul(Mul(45, Pow(E, 2)), F), 272)), Div(Mul(Mul(9, F), G), 68)), Div(Mul(Mul(9, E), H), 68))))), Div(Mul(Mul(Decimal("3.4"), Abs(Pow(A, Neg(Div(3, 2))))), Pow(M, 8)), Pow(Sub(1, M), Div(3, 2)))), Def(A, Div(Add(Add(Add(x, y), z), Mul(2, w)), 5)), Def(X, Sub(1, Div(x, A))), Def(Y, Sub(1, Div(y, A))), Def(Z, Sub(1, Div(z, A))), Def(W, Div(Parentheses(Sub(Sub(Neg(X), Y), Z)), 2)), Def(E, Sub(Add(Add(Mul(X, Y), Mul(X, Z)), Mul(Y, Z)), Mul(3, Pow(W, 2)))), Def(F, Add(Add(Mul(Mul(X, Y), Z), Mul(Mul(2, E), W)), Mul(4, Pow(W, 3)))), Def(G, Mul(Add(Add(Mul(Mul(Mul(2, X), Y), Z), Mul(E, W)), Mul(3, Pow(W, 3))), W)), Def(H, Mul(Mul(Mul(X, Y), Z), Pow(W, 2))), Def(M, Max(Abs(X), Abs(Y), Abs(Z), Abs(W))))),
    Variables(x, y, z, w),
    Assumptions(And(Element(x, CC), Element(y, CC), Element(z, CC), Element(w, CC), GreaterEqual(Re(x), 0), GreaterEqual(Re(y), 0), GreaterEqual(Re(z), 0), Greater(Re(w), 0), Or(And(NotEqual(x, 0), NotEqual(y, 0)), And(NotEqual(x, 0), NotEqual(z, 0)), And(NotEqual(y, 0), NotEqual(z, 0))), Less(Abs(Sub(1, Div(Mul(5, x), Add(Add(Add(x, y), z), Mul(2, w))))), 1), Less(Abs(Sub(1, Div(Mul(5, y), Add(Add(Add(x, y), z), Mul(2, w))))), 1), Less(Abs(Sub(1, Div(Mul(5, z), Add(Add(Add(x, y), z), Mul(2, w))))), 1), Less(Abs(Sub(1, Div(Mul(5, z), Add(Add(Add(x, y), z), Mul(2, w))))), 1))),
    References("https://doi.org/10.6028/jres.107.034"))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC