Assumptions:
TeX:
\left\{{n \atop k}\right\} = \frac{1}{k !} \sum_{i=0}^{k} {\left(-1\right)}^{i} {k \choose i} {\left(k - i\right)}^{n}
n \in \mathbb{Z}_{\ge 0} \,\mathbin{\operatorname{and}}\, k \in \mathbb{Z}_{\ge 0}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| StirlingS2 | Stirling number of the second kind | |
| Factorial | Factorial | |
| Pow | Power | |
| Binomial | Binomial coefficient | |
| ZZGreaterEqual | Integers greater than or equal to n |
Source code for this entry:
Entry(ID("6189b9"),
Formula(Equal(StirlingS2(n, k), Mul(Div(1, Factorial(k)), Sum(Mul(Mul(Pow(-1, i), Binomial(k, i)), Pow(Sub(k, i), n)), Tuple(i, 0, k))))),
Variables(n, k),
Assumptions(And(Element(n, ZZGreaterEqual(0)), Element(k, ZZGreaterEqual(0)))))