Fungrim home page

Fungrim entry: 617fe3

Symbol: ArgMax arg maxP(x)f ⁣(x)\mathop{\operatorname{arg\,max}}\limits_{P\left(x\right)} f\!\left(x\right) Locations of maximum value
ArgMax(f(x), x, P(x)), rendered arg maxP(x)f ⁣(x)\mathop{\operatorname{arg\,max}}\limits_{P\left(x\right)} f\!\left(x\right), gives the set of points rr satisfying P ⁣(r)P\!\left(r\right) such that f ⁣(r)=maxP(x)f ⁣(x)f\!\left(r\right) = \mathop{\max}\limits_{P\left(x\right)} f\!\left(x\right), if the maximum value exists.
If f ⁣(x)f\!\left(x\right) does not attain a maximum value on the set of points defined by P ⁣(x)P\!\left(x\right), the result is the empty set {}\left\{\right\}.
The argument x to this operator defines a locally bound variable. The corresponding predicate P ⁣(x)P\!\left(x\right) must define the domain of xx unambiguously; that is, it must include a statement such as xSx \in S where SS is a known set. More generally, x can be a collection of variables (x,y,)\left(x, y, \ldots\right) all of which become locally bound, with a corresponding predicate P ⁣(x,y,)P\!\left(x, y, \ldots\right).
Definitions:
Fungrim symbol Notation Short description
ArgMaxarg maxP(x)f ⁣(x)\mathop{\operatorname{arg\,max}}\limits_{P\left(x\right)} f\!\left(x\right) Locations of maximum value
MaximummaxP(x)f ⁣(x)\mathop{\max}\limits_{P\left(x\right)} f\!\left(x\right) Maximum value of a set or function
Source code for this entry:
Entry(ID("617fe3"),
    SymbolDefinition(ArgMax, ArgMax(f(x), x, P(x)), "Locations of maximum value"),
    Description(SourceForm(ArgMax(f(x), x, P(x))), ", rendered", ArgMax(f(x), x, P(x)), ", gives the set of points", r, "satisfying", P(r), "such that", Equal(f(r), Maximum(f(x), x, P(x))), ", if the maximum value exists."),
    Description("If", f(x), "does not attain a maximum value on the set of points defined by", P(x), ", the result is the empty set", Set(), "."),
    Description("The argument", SourceForm(x), "to this operator defines a locally bound variable.", "The corresponding predicate", P(x), "must define the domain of", x, "unambiguously; that is, it must include a statement such as", Element(x, S), "where", S, "is a known set.", "More generally,", SourceForm(x), "can be a collection of variables", Tuple(x, y, Ellipsis), "all of which become locally bound, with a corresponding predicate", P(x, y, Ellipsis), "."))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-06-18 07:49:59.356594 UTC