Assumptions:
TeX:
U_{n - 1}\!\left(x\right) \sqrt{{x}^{2} - 1} = \frac{1}{2} \left({\left(x + \sqrt{{x}^{2} - 1}\right)}^{n} - {\left(x - \sqrt{{x}^{2} - 1}\right)}^{n}\right)
n \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, x \in \mathbb{C}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| ChebyshevU | Chebyshev polynomial of the second kind | |
| Sqrt | Principal square root | |
| Pow | Power | |
| ZZ | Integers | |
| CC | Complex numbers |
Source code for this entry:
Entry(ID("61375f"),
Formula(Equal(Mul(ChebyshevU(Sub(n, 1), x), Sqrt(Sub(Pow(x, 2), 1))), Mul(Div(1, 2), Sub(Pow(Add(x, Sqrt(Sub(Pow(x, 2), 1))), n), Pow(Sub(x, Sqrt(Sub(Pow(x, 2), 1))), n))))),
Variables(n, x),
Assumptions(And(Element(n, ZZ), Element(x, CC))))