Fungrim home page

Fungrim entry: 61375f

Un1 ⁣(x)x21=12((x+x21)n(xx21)n)U_{n - 1}\!\left(x\right) \sqrt{{x}^{2} - 1} = \frac{1}{2} \left({\left(x + \sqrt{{x}^{2} - 1}\right)}^{n} - {\left(x - \sqrt{{x}^{2} - 1}\right)}^{n}\right)
Assumptions:nZandxCn \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, x \in \mathbb{C}
TeX:
U_{n - 1}\!\left(x\right) \sqrt{{x}^{2} - 1} = \frac{1}{2} \left({\left(x + \sqrt{{x}^{2} - 1}\right)}^{n} - {\left(x - \sqrt{{x}^{2} - 1}\right)}^{n}\right)

n \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, x \in \mathbb{C}
Definitions:
Fungrim symbol Notation Short description
ChebyshevUUn ⁣(x)U_{n}\!\left(x\right) Chebyshev polynomial of the second kind
Sqrtz\sqrt{z} Principal square root
Powab{a}^{b} Power
ZZZ\mathbb{Z} Integers
CCC\mathbb{C} Complex numbers
Source code for this entry:
Entry(ID("61375f"),
    Formula(Equal(Mul(ChebyshevU(Sub(n, 1), x), Sqrt(Sub(Pow(x, 2), 1))), Mul(Div(1, 2), Sub(Pow(Add(x, Sqrt(Sub(Pow(x, 2), 1))), n), Pow(Sub(x, Sqrt(Sub(Pow(x, 2), 1))), n))))),
    Variables(n, x),
    Assumptions(And(Element(n, ZZ), Element(x, CC))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-06-18 07:49:59.356594 UTC