Assumptions:
TeX:
U_{n - 1}\!\left(x\right) \sqrt{{x}^{2} - 1} = \frac{1}{2} \left({\left(x + \sqrt{{x}^{2} - 1}\right)}^{n} - {\left(x - \sqrt{{x}^{2} - 1}\right)}^{n}\right) n \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; x \in \mathbb{C}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
ChebyshevU | Chebyshev polynomial of the second kind | |
Sqrt | Principal square root | |
Pow | Power | |
ZZ | Integers | |
CC | Complex numbers |
Source code for this entry:
Entry(ID("61375f"), Formula(Equal(Mul(ChebyshevU(Sub(n, 1), x), Sqrt(Sub(Pow(x, 2), 1))), Mul(Div(1, 2), Sub(Pow(Add(x, Sqrt(Sub(Pow(x, 2), 1))), n), Pow(Sub(x, Sqrt(Sub(Pow(x, 2), 1))), n))))), Variables(n, x), Assumptions(And(Element(n, ZZ), Element(x, CC))))