Assumptions:
TeX:
L\!\left(s, \chi\right) = \sum_{n=1}^{\infty} \frac{\chi(n)}{{n}^{s}}
q \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; \chi \in G_{q} \;\mathbin{\operatorname{and}}\; s \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \operatorname{Re}(s) > 1Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| DirichletL | Dirichlet L-function | |
| Sum | Sum | |
| Pow | Power | |
| Infinity | Positive infinity | |
| ZZGreaterEqual | Integers greater than or equal to n | |
| DirichletGroup | Dirichlet characters with given modulus | |
| CC | Complex numbers | |
| Re | Real part |
Source code for this entry:
Entry(ID("604c7c"),
Formula(Equal(DirichletL(s, chi), Sum(Div(chi(n), Pow(n, s)), For(n, 1, Infinity)))),
Variables(q, chi, s),
Assumptions(And(Element(q, ZZGreaterEqual(1)), Element(chi, DirichletGroup(q)), Element(s, CC), Greater(Re(s), 1))))