Assumptions:
TeX:
{c}_{n} = \frac{1}{n {a}_{0}} \sum_{k=1}^{n} \left(\frac{k}{2} - n\right) {a}_{k} {c}_{n - k}\; \text{ where } {c}_{n} = [{x}^{n}] \frac{1}{\sqrt{A}},\;{a}_{n} = [{x}^{n}] A A \in \mathbb{C}[[x]] \;\mathbin{\operatorname{and}}\; [{x}^{0}] A \ne 0 \;\mathbin{\operatorname{and}}\; n \in \mathbb{Z}_{\ge 1}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Sum | Sum | |
Sqrt | Principal square root | |
PowerSeries | Formal power series | |
CC | Complex numbers | |
ZZGreaterEqual | Integers greater than or equal to n |
Source code for this entry:
Entry(ID("5ff181"), Formula(Where(Equal(Subscript(c, n), Mul(Div(1, Mul(n, Subscript(a, 0))), Sum(Mul(Mul(Sub(Div(k, 2), n), Subscript(a, k)), Subscript(c, Sub(n, k))), For(k, 1, n)))), Equal(Subscript(c, n), SeriesCoefficient(Div(1, Sqrt(A)), x, n)), Equal(Subscript(a, n), SeriesCoefficient(A, x, n)))), Variables(A, n), Assumptions(And(Element(A, PowerSeries(CC, x)), NotEqual(SeriesCoefficient(A, x, 0), 0), Element(n, ZZGreaterEqual(1)))))