Assumptions:
TeX:
\theta_{1}\!\left(2 z , \tau\right) = \frac{2 \theta_{1}\!\left(z , \tau\right) \theta_{2}\!\left(z , \tau\right) \theta_{3}\!\left(z , \tau\right) \theta_{4}\!\left(z , \tau\right)}{\theta_{2}\!\left(0 , \tau\right) \theta_{3}\!\left(0 , \tau\right) \theta_{4}\!\left(0 , \tau\right)} z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \tau \in \mathbb{H}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
JacobiTheta | Jacobi theta function | |
CC | Complex numbers | |
HH | Upper complex half-plane |
Source code for this entry:
Entry(ID("5fe58d"), Formula(Equal(JacobiTheta(1, Mul(2, z), tau), Div(Mul(Mul(Mul(Mul(2, JacobiTheta(1, z, tau)), JacobiTheta(2, z, tau)), JacobiTheta(3, z, tau)), JacobiTheta(4, z, tau)), Mul(Mul(JacobiTheta(2, 0, tau), JacobiTheta(3, 0, tau)), JacobiTheta(4, 0, tau))))), Variables(z, tau), Assumptions(And(Element(z, CC), Element(tau, HH))))