Assumptions:
TeX:
{n \choose k} \ge \frac{1}{\sqrt{8}} \sqrt{\frac{n}{k \left(n - k\right)}} \frac{{n}^{n}}{{k}^{k} {\left(n - k\right)}^{n - k}}
n \in \mathbb{Z}_{\ge 2} \,\mathbin{\operatorname{and}}\, k \in \{1, 2, \ldots n - 1\}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| Binomial | Binomial coefficient | |
| Sqrt | Principal square root | |
| Pow | Power | |
| ZZGreaterEqual | Integers greater than or equal to n | |
| ZZBetween | Integers between a and b inclusive |
Source code for this entry:
Entry(ID("5f7334"),
Formula(GreaterEqual(Binomial(n, k), Mul(Mul(Div(1, Sqrt(8)), Sqrt(Div(n, Mul(k, Sub(n, k))))), Div(Pow(n, n), Mul(Pow(k, k), Pow(Sub(n, k), Sub(n, k))))))),
Variables(n, k),
Assumptions(And(Element(n, ZZGreaterEqual(2)), Element(k, ZZBetween(1, Sub(n, 1))))))