Fungrim home page

Fungrim entry: 5f7334

(nk)18nk(nk)nnkk(nk)nk{n \choose k} \ge \frac{1}{\sqrt{8}} \sqrt{\frac{n}{k \left(n - k\right)}} \frac{{n}^{n}}{{k}^{k} {\left(n - k\right)}^{n - k}}
Assumptions:nZ2andk{1,2,n1}n \in \mathbb{Z}_{\ge 2} \,\mathbin{\operatorname{and}}\, k \in \{1, 2, \ldots n - 1\}
TeX:
{n \choose k} \ge \frac{1}{\sqrt{8}} \sqrt{\frac{n}{k \left(n - k\right)}} \frac{{n}^{n}}{{k}^{k} {\left(n - k\right)}^{n - k}}

n \in \mathbb{Z}_{\ge 2} \,\mathbin{\operatorname{and}}\, k \in \{1, 2, \ldots n - 1\}
Definitions:
Fungrim symbol Notation Short description
Binomial(nk){n \choose k} Binomial coefficient
Sqrtz\sqrt{z} Principal square root
Powab{a}^{b} Power
ZZGreaterEqualZn\mathbb{Z}_{\ge n} Integers greater than or equal to n
ZZBetween{a,a+1,b}\{a, a + 1, \ldots b\} Integers between a and b inclusive
Source code for this entry:
Entry(ID("5f7334"),
    Formula(GreaterEqual(Binomial(n, k), Mul(Mul(Div(1, Sqrt(8)), Sqrt(Div(n, Mul(k, Sub(n, k))))), Div(Pow(n, n), Mul(Pow(k, k), Pow(Sub(n, k), Sub(n, k))))))),
    Variables(n, k),
    Assumptions(And(Element(n, ZZGreaterEqual(2)), Element(k, ZZBetween(1, Sub(n, 1))))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-06-18 07:49:59.356594 UTC