Assumptions:
TeX:
x \in \mathbb{C} \setminus \left(-\infty, 0\right] \;\mathbin{\operatorname{and}}\; y \in \mathbb{C} \setminus \left(-\infty, 0\right] \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \setminus \left(-\infty, 0\right]Definitions:
| Fungrim symbol | Notation | Short description | 
|---|---|---|
| ComplexDerivative | Complex derivative | |
| CarlsonRF | Carlson symmetric elliptic integral of the first kind | |
| CarlsonRD | Degenerate Carlson symmetric elliptic integral of the third kind | |
| CC | Complex numbers | |
| OpenClosedInterval | Open-closed interval | |
| Infinity | Positive infinity | 
Source code for this entry:
Entry(ID("5f0adb"),
    Equal(ComplexDerivative(CarlsonRF(x, y, z), For(x, x)), Neg(Mul(Div(1, 6), CarlsonRD(y, z, x)))),
    Variables(x, y, z),
    Assumptions(And(Element(x, SetMinus(CC, OpenClosedInterval(Neg(Infinity), 0))), Element(y, SetMinus(CC, OpenClosedInterval(Neg(Infinity), 0))), Element(z, SetMinus(CC, OpenClosedInterval(Neg(Infinity), 0))))))