Assumptions:
Pólya-Vinogradov inequality, explicit form
References:
- E. Dobrowolski and K. S. Williams, An upper bound for the sum ... for a certain class of functions f, Proceedings of the American Mathematical Society, Vol. 114, No. 1 (Jan., 1992), pp. 29-35, http://doi.org/10.2307/2159779
TeX:
\left|\sum_{n=M}^{N} \chi(n)\right| \le \frac{\sqrt{q} \log(q)}{2 \log(2)} + 3 \sqrt{q} q \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; M \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; N \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; \chi \in G_{q} \;\mathbin{\operatorname{and}}\; \chi \ne \chi_{q \, . \, 1}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Abs | Absolute value | |
Sum | Sum | |
Sqrt | Principal square root | |
Log | Natural logarithm | |
ZZGreaterEqual | Integers greater than or equal to n | |
ZZ | Integers | |
DirichletGroup | Dirichlet characters with given modulus | |
DirichletCharacter | Dirichlet character |
Source code for this entry:
Entry(ID("5df909"), Formula(LessEqual(Abs(Sum(chi(n), For(n, M, N))), Add(Div(Mul(Sqrt(q), Log(q)), Mul(2, Log(2))), Mul(3, Sqrt(q))))), Variables(q, chi, M, N), Assumptions(And(Element(q, ZZGreaterEqual(1)), Element(M, ZZ), Element(N, ZZ), Element(chi, DirichletGroup(q)), NotEqual(chi, DirichletCharacter(q, 1)))), Description("Pólya-Vinogradov inequality, explicit form"), References("E. Dobrowolski and K. S. Williams, An upper bound for the sum ... for a certain class of functions f, Proceedings of the American Mathematical Society, Vol. 114, No. 1 (Jan., 1992), pp. 29-35, http://doi.org/10.2307/2159779"))