Fungrim home page

Fungrim entry: 5d8804

Π ⁣(n,0)=π21n\Pi\!\left(n, 0\right) = \frac{\pi}{2 \sqrt{1 - n}}
Assumptions:nCn \in \mathbb{C}
TeX:
\Pi\!\left(n, 0\right) = \frac{\pi}{2 \sqrt{1 - n}}

n \in \mathbb{C}
Definitions:
Fungrim symbol Notation Short description
EllipticPiΠ ⁣(n,m)\Pi\!\left(n, m\right) Legendre complete elliptic integral of the third kind
Piπ\pi The constant pi (3.14...)
Sqrtz\sqrt{z} Principal square root
CCC\mathbb{C} Complex numbers
Source code for this entry:
Entry(ID("5d8804"),
    Formula(Equal(EllipticPi(n, 0), Div(Pi, Mul(2, Sqrt(Sub(1, n)))))),
    Variables(n),
    Assumptions(Element(n, CC)))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC