Assumptions:
TeX:
\tau = i \frac{K\!\left(1 - \lambda(\tau)\right)}{K\!\left(\lambda(\tau)\right)} + 2 \left\lceil \frac{1}{2} \operatorname{Re}(\tau) - \frac{1}{2} \right\rceil \tau \in \left\{ {\tau}_{1} + n : {\tau}_{1} \in \operatorname{Interior}(\mathcal{F}_{\lambda}) \;\mathbin{\operatorname{and}}\; n \in \mathbb{Z} \right\}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
ConstI | Imaginary unit | |
EllipticK | Legendre complete elliptic integral of the first kind | |
ModularLambda | Modular lambda function | |
Re | Real part | |
ModularLambdaFundamentalDomain | Fundamental domain of the modular lambda function | |
ZZ | Integers |
Source code for this entry:
Entry(ID("5d550c"), Formula(Equal(tau, Add(Mul(ConstI, Div(EllipticK(Sub(1, ModularLambda(tau))), EllipticK(ModularLambda(tau)))), Mul(2, Ceil(Sub(Mul(Div(1, 2), Re(tau)), Div(1, 2))))))), Variables(tau), Assumptions(Element(tau, Set(Add(Subscript(tau, 1), n), For(Tuple(Subscript(tau, 1), n)), And(Element(Subscript(tau, 1), Interior(ModularLambdaFundamentalDomain)), Element(n, ZZ))))))