Assumptions:
TeX:
\psi^{(m)}\!\left(\frac{1}{2}\right) = {\left(-1\right)}^{m + 1} \left({2}^{m + 1} - 1\right) m ! \zeta\!\left(m + 1\right) m \in \mathbb{Z}_{\ge 1}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
DigammaFunction | Digamma function | |
Pow | Power | |
Factorial | Factorial | |
RiemannZeta | Riemann zeta function | |
ZZGreaterEqual | Integers greater than or equal to n |
Source code for this entry:
Entry(ID("5ce30b"), Formula(Equal(DigammaFunction(Div(1, 2), m), Mul(Mul(Mul(Pow(-1, Add(m, 1)), Sub(Pow(2, Add(m, 1)), 1)), Factorial(m)), RiemannZeta(Add(m, 1))))), Variables(m), Assumptions(Element(m, ZZGreaterEqual(1))))