Assumptions:
TeX:
\theta_{1}\!\left(z + n , \tau\right) = {\left(-1\right)}^{n} \theta_{1}\!\left(z , \tau\right)
z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \tau \in \mathbb{H} \;\mathbin{\operatorname{and}}\; n \in \mathbb{Z}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| JacobiTheta | Jacobi theta function | |
| Pow | Power | |
| CC | Complex numbers | |
| HH | Upper complex half-plane | |
| ZZ | Integers |
Source code for this entry:
Entry(ID("5cdae6"),
Formula(Equal(JacobiTheta(1, Add(z, n), tau), Mul(Pow(-1, n), JacobiTheta(1, z, tau)))),
Variables(z, tau, n),
Assumptions(And(Element(z, CC), Element(tau, HH), Element(n, ZZ))))