Assumptions:
TeX:
F_{n} = F_{m + 1} F_{n - m} + F_{m} F_{n - m - 1} m \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; n \in \mathbb{Z}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Fibonacci | Fibonacci number | |
ZZ | Integers |
Source code for this entry:
Entry(ID("5cb57e"), Formula(Equal(Fibonacci(n), Add(Mul(Fibonacci(Add(m, 1)), Fibonacci(Sub(n, m))), Mul(Fibonacci(m), Fibonacci(Sub(Sub(n, m), 1)))))), Variables(m, n), Assumptions(And(Element(m, ZZ), Element(n, ZZ))))