TeX:
\Lambda = \lim_{n \to \infty} {\lambda}_{n}^{1 / n}\; \text{ where } R = \left\{ r : r \in \mathbb{R}(t) \,\mathbin{\operatorname{and}}\, \deg(r) \le \left(n, n\right) \right\},\;{\lambda}_{n} = \mathop{\operatorname{inf}}\limits_{r \in R} \mathop{\operatorname{sup}}\limits_{x \in \left(-\infty, 0\right]} \left|{e}^{x} - r(x)\right|Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| HalphenConstant | Halphen's constant (one-ninth constant) 0.10765... | |
| SequenceLimit | Limiting value of sequence | |
| Pow | Power | |
| Infinity | Positive infinity | |
| RR | Real numbers | |
| Infimum | Infimum of a set or function | |
| Supremum | Supremum of a set or function | |
| Abs | Absolute value | |
| Exp | Exponential function | |
| OpenClosedInterval | Open-closed interval |
Source code for this entry:
Entry(ID("5c1e44"),
Formula(Equal(HalphenConstant, Where(SequenceLimit(Pow(Subscript(lamda, n), Div(1, n)), For(n, Infinity)), Equal(R, Set(r, ForElement(r, RationalFunctions(RR, t)), LessEqual(RationalFunctionDegree(r), Tuple(n, n)))), Equal(Subscript(lamda, n), Infimum(Supremum(Abs(Sub(Exp(x), r(x))), ForElement(x, OpenClosedInterval(Neg(Infinity), 0))), ForElement(r, R)))))))