Assumptions:
TeX:
T_{n}\!\left(\frac{x + {x}^{-1}}{2}\right) = \frac{{x}^{n} + {x}^{-n}}{2} n \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; x \in \mathbb{C} \setminus \left\{0\right\}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
ChebyshevT | Chebyshev polynomial of the first kind | |
Pow | Power | |
ZZ | Integers | |
CC | Complex numbers |
Source code for this entry:
Entry(ID("5bd0ec"), Formula(Equal(ChebyshevT(n, Div(Add(x, Pow(x, -1)), 2)), Div(Add(Pow(x, n), Pow(x, Neg(n))), 2))), Variables(n, x), Assumptions(And(Element(n, ZZ), Element(x, SetMinus(CC, Set(0))))))