References:
- https://math.stackexchange.com/questions/1760270/closed-form-of-an-integral-involving-a-jacobi-theta-function-int-0-infty
TeX:
\int_{0}^{\infty} \frac{\theta_{2}^{4}\!\left(0, i t\right) \theta_{4}^{4}\!\left(0, i t\right)}{1 + {t}^{2}} \, dt = \frac{8 \zeta\!\left(3\right)}{{\pi}^{3}}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| Integral | Integral | |
| Pow | Power | |
| JacobiTheta | Jacobi theta function | |
| ConstI | Imaginary unit | |
| Infinity | Positive infinity | |
| RiemannZeta | Riemann zeta function | |
| Pi | The constant pi (3.14...) |
Source code for this entry:
Entry(ID("5b87f3"),
Formula(Equal(Integral(Div(Mul(Pow(JacobiTheta(2, 0, Mul(ConstI, t)), 4), Pow(JacobiTheta(4, 0, Mul(ConstI, t)), 4)), Add(1, Pow(t, 2))), For(t, 0, Infinity)), Div(Mul(8, RiemannZeta(3)), Pow(Pi, 3)))),
References("https://math.stackexchange.com/questions/1760270/closed-form-of-an-integral-involving-a-jacobi-theta-function-int-0-infty"))