Assumptions:
TeX:
A\!\left(n, k\right) = \sum_{r=0}^{k - 1} \delta_{(\gcd\left(r, k\right),1)} \exp\!\left(\pi i \left(s\!\left(r, k\right) - \frac{2 n r}{k}\right)\right)
n \in \mathbb{Z}_{\ge 1} \,\mathbin{\operatorname{and}}\, k \in \mathbb{Z}_{\ge 1}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| HardyRamanujanA | Exponential sum in the Hardy-Ramanujan-Rademacher formula | |
| KroneckerDelta | Kronecker delta | |
| GCD | Greatest common divisor | |
| Exp | Exponential function | |
| ConstPi | The constant pi (3.14...) | |
| ConstI | Imaginary unit | |
| DedekindSum | Dedekind sum | |
| ZZGreaterEqual | Integers greater than or equal to n |
Source code for this entry:
Entry(ID("5adbc3"),
Formula(Equal(HardyRamanujanA(n, k), Sum(Mul(KroneckerDelta(GCD(r, k), 1), Exp(Mul(Mul(ConstPi, ConstI), Sub(DedekindSum(r, k), Div(Mul(Mul(2, n), r), k))))), Tuple(r, 0, Sub(k, 1))))),
Variables(n, k),
Assumptions(And(Element(n, ZZGreaterEqual(1)), Element(k, ZZGreaterEqual(1)))))