Assumptions:
Alternative assumptions:
TeX:
J'_{\nu}\!\left(z\right) = \frac{J_{\nu - 1}\!\left(z\right) - J_{\nu + 1}\!\left(z\right)}{2} \nu \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \nu \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \setminus \left\{0\right\}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
BesselJ | Bessel function of the first kind | |
ZZ | Integers | |
CC | Complex numbers |
Source code for this entry:
Entry(ID("5aceb9"), Formula(Equal(BesselJ(nu, z, 1), Div(Sub(BesselJ(Sub(nu, 1), z), BesselJ(Add(nu, 1), z)), 2))), Variables(nu, z), Assumptions(And(Element(nu, ZZ), Element(z, CC)), And(Element(nu, CC), Element(z, SetMinus(CC, Set(0))))))