Fungrim home page

Fungrim entry: 5ab6bf

RF ⁣(x,y,z)=iRF ⁣(x,y,z)R_F\!\left(-x, -y, -z\right) = -i R_F\!\left(x, y, z\right)
Assumptions:x[0,)  and  y[0,)  and  z[0,)x \in \left[0, \infty\right) \;\mathbin{\operatorname{and}}\; y \in \left[0, \infty\right) \;\mathbin{\operatorname{and}}\; z \in \left[0, \infty\right)
TeX:
R_F\!\left(-x, -y, -z\right) = -i R_F\!\left(x, y, z\right)

x \in \left[0, \infty\right) \;\mathbin{\operatorname{and}}\; y \in \left[0, \infty\right) \;\mathbin{\operatorname{and}}\; z \in \left[0, \infty\right)
Definitions:
Fungrim symbol Notation Short description
CarlsonRFRF ⁣(x,y,z)R_F\!\left(x, y, z\right) Carlson symmetric elliptic integral of the first kind
ConstIii Imaginary unit
ClosedOpenInterval[a,b)\left[a, b\right) Closed-open interval
Infinity\infty Positive infinity
Source code for this entry:
Entry(ID("5ab6bf"),
    Formula(Equal(CarlsonRF(Neg(x), Neg(y), Neg(z)), Neg(Mul(ConstI, CarlsonRF(x, y, z))))),
    Variables(x, y, z),
    Assumptions(And(Element(x, ClosedOpenInterval(0, Infinity)), Element(y, ClosedOpenInterval(0, Infinity)), Element(z, ClosedOpenInterval(0, Infinity)))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC