Assumptions:
TeX:
R_J\!\left(0, y, z, w\right) = \frac{3 \pi}{4} R_{-3 / 2}\!\left(\left[\frac{1}{2}, \frac{1}{2}, 1\right], \left[y, z, w\right]\right)
y \in \mathbb{C} \setminus \left(-\infty, 0\right] \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \setminus \left(-\infty, 0\right] \;\mathbin{\operatorname{and}}\; w \in \mathbb{C} \setminus \left(-\infty, 0\right]Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| CarlsonRJ | Carlson symmetric elliptic integral of the third kind | |
| Pi | The constant pi (3.14...) | |
| CarlsonHypergeometricR | Carlson multivariate hypergeometric function | |
| CC | Complex numbers | |
| OpenClosedInterval | Open-closed interval | |
| Infinity | Positive infinity |
Source code for this entry:
Entry(ID("5a8f57"),
Formula(Equal(CarlsonRJ(0, y, z, w), Mul(Div(Mul(3, Pi), 4), CarlsonHypergeometricR(Neg(Div(3, 2)), List(Div(1, 2), Div(1, 2), 1), List(y, z, w))))),
Variables(y, z, w),
Assumptions(And(Element(y, SetMinus(CC, OpenClosedInterval(Neg(Infinity), 0))), Element(z, SetMinus(CC, OpenClosedInterval(Neg(Infinity), 0))), Element(w, SetMinus(CC, OpenClosedInterval(Neg(Infinity), 0))))))