Assumptions:
TeX:
\theta_{1}^{4}\!\left(z, \tau\right) - \theta_{2}^{4}\!\left(z, \tau\right) = \theta_{4}^{4}\!\left(z, \tau\right) - \theta_{3}^{4}\!\left(z, \tau\right) z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \tau \in \mathbb{H}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Pow | Power | |
JacobiTheta | Jacobi theta function | |
CC | Complex numbers | |
HH | Upper complex half-plane |
Source code for this entry:
Entry(ID("5a3ebf"), Formula(Equal(Sub(Pow(JacobiTheta(1, z, tau), 4), Pow(JacobiTheta(2, z, tau), 4)), Sub(Pow(JacobiTheta(4, z, tau), 4), Pow(JacobiTheta(3, z, tau), 4)))), Variables(z, tau), Assumptions(And(Element(z, CC), Element(tau, HH))))