Fungrim home page

Fungrim entry: 5a11eb

logG(x)={log ⁣(G(x)),x>0log ⁣(G(x))+12n(n1)πi,otherwise   where n=x\log G(x) = \begin{cases} \log\!\left(G(x)\right), & x > 0\\\log\!\left(\left|G(x)\right|\right) + \frac{1}{2} n \left(n - 1\right) \pi i, & \text{otherwise}\\ \end{cases}\; \text{ where } n = \left\lfloor x \right\rfloor
Assumptions:xR  and  x{0,1,}x \in \mathbb{R} \;\mathbin{\operatorname{and}}\; x \notin \{0, -1, \ldots\}
TeX:
\log G(x) = \begin{cases} \log\!\left(G(x)\right), & x > 0\\\log\!\left(\left|G(x)\right|\right) + \frac{1}{2} n \left(n - 1\right) \pi i, & \text{otherwise}\\ \end{cases}\; \text{ where } n = \left\lfloor x \right\rfloor

x \in \mathbb{R} \;\mathbin{\operatorname{and}}\; x \notin \{0, -1, \ldots\}
Definitions:
Fungrim symbol Notation Short description
LogBarnesGlogG(z)\log G(z) Logarithmic Barnes G-function
Loglog(z)\log(z) Natural logarithm
BarnesGG(z)G(z) Barnes G-function
Absz\left|z\right| Absolute value
Piπ\pi The constant pi (3.14...)
ConstIii Imaginary unit
RRR\mathbb{R} Real numbers
ZZLessEqualZn\mathbb{Z}_{\le n} Integers less than or equal to n
Source code for this entry:
Entry(ID("5a11eb"),
    Formula(Equal(LogBarnesG(x), Where(Cases(Tuple(Log(BarnesG(x)), Greater(x, 0)), Tuple(Add(Log(Abs(BarnesG(x))), Mul(Mul(Mul(Mul(Div(1, 2), n), Sub(n, 1)), Pi), ConstI)), Otherwise)), Equal(n, Floor(x))))),
    Variables(x),
    Assumptions(And(Element(x, RR), NotElement(x, ZZLessEqual(0)))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC