Assumptions:
TeX:
\log G(x) = \begin{cases} \log\!\left(G(x)\right), & x > 0\\\log\!\left(\left|G(x)\right|\right) + \frac{1}{2} n \left(n - 1\right) \pi i, & \text{otherwise}\\ \end{cases}\; \text{ where } n = \left\lfloor x \right\rfloor
x \in \mathbb{R} \;\mathbin{\operatorname{and}}\; x \notin \{0, -1, \ldots\}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| LogBarnesG | Logarithmic Barnes G-function | |
| Log | Natural logarithm | |
| BarnesG | Barnes G-function | |
| Abs | Absolute value | |
| Pi | The constant pi (3.14...) | |
| ConstI | Imaginary unit | |
| RR | Real numbers | |
| ZZLessEqual | Integers less than or equal to n |
Source code for this entry:
Entry(ID("5a11eb"),
Formula(Equal(LogBarnesG(x), Where(Cases(Tuple(Log(BarnesG(x)), Greater(x, 0)), Tuple(Add(Log(Abs(BarnesG(x))), Mul(Mul(Mul(Mul(Div(1, 2), n), Sub(n, 1)), Pi), ConstI)), Otherwise)), Equal(n, Floor(x))))),
Variables(x),
Assumptions(And(Element(x, RR), NotElement(x, ZZLessEqual(0)))))