Assumptions:
TeX:
\theta_{2}^{2}\!\left(0, \frac{\tau}{2}\right) = 2 \theta_{2}\!\left(0 , \tau\right) \theta_{3}\!\left(0 , \tau\right)
\tau \in \mathbb{H}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| Pow | Power | |
| JacobiTheta | Jacobi theta function | |
| HH | Upper complex half-plane |
Source code for this entry:
Entry(ID("59fd23"),
Formula(Equal(Pow(JacobiTheta(2, 0, Div(tau, 2)), 2), Mul(Mul(2, JacobiTheta(2, 0, tau)), JacobiTheta(3, 0, tau)))),
Variables(tau),
Assumptions(Element(tau, HH)))