Assumptions:
TeX:
\theta_{2}^{2}\!\left(0, \frac{\tau}{2}\right) = 2 \theta_{2}\!\left(0 , \tau\right) \theta_{3}\!\left(0 , \tau\right) \tau \in \mathbb{H}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Pow | Power | |
JacobiTheta | Jacobi theta function | |
HH | Upper complex half-plane |
Source code for this entry:
Entry(ID("59fd23"), Formula(Equal(Pow(JacobiTheta(2, 0, Div(tau, 2)), 2), Mul(Mul(2, JacobiTheta(2, 0, tau)), JacobiTheta(3, 0, tau)))), Variables(tau), Assumptions(Element(tau, HH)))