Assumptions:
TeX:
\sum_{n=0}^{\infty} p\!\left(n\right) {q}^{n} = \frac{1}{\phi\!\left(q\right)} q \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \left|q\right| \lt 1
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
PartitionsP | Integer partition function | |
Pow | Power | |
Infinity | Positive infinity | |
EulerQSeries | Euler's q-series | |
CC | Complex numbers | |
Abs | Absolute value |
Source code for this entry:
Entry(ID("599417"), Formula(Equal(Sum(Mul(PartitionsP(n), Pow(q, n)), Tuple(n, 0, Infinity)), Div(1, EulerQSeries(q)))), Variables(q), Assumptions(And(Element(q, CC), Less(Abs(q), 1))))