Assumptions:
TeX:
\sum_{n=0}^{\infty} p\!\left(n\right) {q}^{n} = \frac{1}{\phi\!\left(q\right)}
q \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \left|q\right| \lt 1Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| PartitionsP | Integer partition function | |
| Pow | Power | |
| Infinity | Positive infinity | |
| EulerQSeries | Euler's q-series | |
| CC | Complex numbers | |
| Abs | Absolute value |
Source code for this entry:
Entry(ID("599417"),
Formula(Equal(Sum(Mul(PartitionsP(n), Pow(q, n)), Tuple(n, 0, Infinity)), Div(1, EulerQSeries(q)))),
Variables(q),
Assumptions(And(Element(q, CC), Less(Abs(q), 1))))